Layer Structured Materials for Advanced Energy Storage and Conversion
نویسندگان
چکیده
منابع مشابه
Materials and structures for stretchable energy storage and conversion devices.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of high...
متن کاملMaterials for sustainable energy production, storage, and conversion
A steadily growing human population and the growing global economy have led to increasing energy consumption and the realization that fossil fuels are a finite resource on earth. Moreover, due to the rising global temperature, there is a need to reduce CO2 emissions to mitigate or prevent further global warming. Both needs have fueled international efforts to convert the current energy supply s...
متن کاملCarbon-based electrocatalysts for advanced energy conversion and storage
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon n...
متن کاملCarbon nanomaterials for advanced energy conversion and storage.
It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g....
متن کاملRecent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Small
سال: 2017
ISSN: 1613-6810
DOI: 10.1002/smll.201701649